This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

A Comparative Study on Some Diaryl Azines Amino Acid Derivatives Ragab A. El-Sayed^a

^a Chemistry Department, Al-Azhar University, Nasr City, Cairo, Egypt

To cite this Article El-Sayed, Ragab A.(2007) 'A Comparative Study on Some Diaryl Azines Amino Acid Derivatives', Phosphorus, Sulfur, and Silicon and the Related Elements, 182:5, 1131-1142

To link to this Article: DOI: 10.1080/10426500601142155 URL: http://dx.doi.org/10.1080/10426500601142155

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 182:1131-1142, 2007

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500601142155

A Comparative Study on Some Diaryl Azines Amino Acid Derivatives

Ragab A. El-Sayed

Chemistry Department, Al-Azhar University, Nasr City, Cairo, Egypt

Benzaldehydeazines, p-anisaldehydeazines, and thiophene-2-carboxaldehyde azines react with excess chlorosulfonic acid to give corresponding disulfonyl chlorides 1,13, and 24. These were condensed with nucleophiles to give disulfonyl amino acid derivatives, 2–4, 14–16, and 25–27. Some of the corresponding methyl esters were prepared: 5–6, 17–18, and 28–29. Hydrazinolysis of these methyl esters yielded hydrazides 7–8, 19–20, and 30–31. Coupling reactions of some amino acid derivatives, in THF-Et₃N medium using the dicyclohexylcarbodiimide method DCC, furnished dipeptide methyl esters 9–12, 21–23, and 32–34. Attemped chlorosulfonation of furan-2-carboxaldehyde azine were unsuccessful. Some spectra data are briefly discussed.

Keywords Benzaldehyde azines; chlorosulfonation of diarylazines; p-anisaldehyde azines; thiophene-2-carboxyaldehyde azines; and their reactions with essential amino acids

INTRODUCTION

The work reported here is a continuation of our general program on the chemistry and reactivity of aryl sulfonyl derivatives as candidate pesticides, which are found to possess hypoglycemic, antipyretic, analgesic diuretic, bacteriostatic, and other pharmacological activities. The compounds mentioned were found to have these activities. ^{1–12}

Diarylazines are known¹³ to be readly formed by condensation of the appropriate aryl aldehyde and hydrazine hydrate. However, the chlorosulfonation of these compounds has been previously reported. In view of the known ability of diaryl azines to undergo 1,3-dipolar cycloaddition reactions with maleic acid derivatives.

Received May 4, 2006; accepted October 17, 2006.

The author is grateful to Prof. Dr. Mohamed H. El-Nagdi, Chemistry Department, Faculty of Science, Cairo University, for helping me during my research.

Address correspondence to Ragab A. El-Sayed, Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt. E-mail: dr_ragabaly@yahoo.com

Sulfonyl chlorides **1,13**, and **24** by condensation with nucleophiles, e.g., amino acids residue, can be converted into sulfonylamino acid derivatives for biological evaluation as candidate biocides.

DISCUSSION

In diaryl azines, the C=N group is a deactivating substituent with regard to electrophilic substitution. In agreement, (Comp. 1, R = X = H) were prepared by reaction of chlorosulfonic acid with benzaldehyde azine in a 68% yield.

The N—N bond does not undergo fission under the reaction conditions adopted, and the imino group was deactivated to electrophilic attack. The ¹H NMR spectrum contained an unsymmetrical aromatic region.

Other azines were treated with chlorosulfonic acid, p-anisaldehyde azines, and (Comp. 13, R = P-OMe, X = H) accured under milder conditions than for benzaldehyde azine (Comp. 1, R = X = H). In thiophene carboxaldehyde azines, (Comp. 24, Y = S, X = H) the more electron rich azines react with chlorosulfonic acid, the greater reactivity of the thiophene ring as a result from electron donation from the hetero sulfur atom, which is known. ¹⁴ Generally, an electron—donner substituent gives direct electrophilic substition at 5-position of the thiophene ring. The ¹H NMR spectrum of disulfonylamino acids derivatives showed an AB pattern in the aromatic resonance at (δ 7.8, 7.7).

In the case of furan-2-carboxyladehydeazines (Comp. **35**, Y = O, X = H) powerful electron donation from the hetero oxygen atom. The 1 H NMR spectrum showed a complex series of aromatic resonace at (δ **7.3–6.8**).

Furan is well known¹⁵, to decompose with highly acidic sulfonation reagents, chlorosulfonic and sulfuric acid; the electron-withdrawing C=N group might sufficiently stabilize the furan ring to allow sulfonation, as was observed with furan-2-carboxamide, ¹⁶ and carboxanilide. ¹⁷

EXPERIMENTAL

Melting points were taken on a Griffin melting point apparatus and are uncorrected. Infrared solid samples were run as a KBr disc on a Schimadzu model 440 spectrophotometer. ¹H NMR spectra were measured in DMSO-d₆ as a solvent unless otherwise stated using Fx 90 Q Furier Transform ¹HNMR. Mass spectra were obtained using a Schimadzu (Japan). GC. M.S. QP 1000 Ex spectrometer using the direct inlet system. TLC analyses were carried out on Merek silica gel plates and

developed with n-butanol-acetic acid-water (4:1:1) using iodine, nin-hydrin, and benzidine as spraying agents.

Diaryl azines disulfonyl chloride **1,13**, and **24** were prepared according to the procedure described earlier. ¹⁸

Coupling Reaction 2-4, 14-16, and (25-27): General Procedure

To an amino acid (0.2 mol) in a water (25 mL) THF (15 mL) mixture was added triethylamine (5 mL), followed by the portionwise addition of disulfonyl chlorides (0.11 mol) during 30 min. The temperature of the reaction mixture during the process of addition was kept at 10°C . Stirring continued for 4 h at 20°C . Tetrahydrofuran was removed by concentration of the reaction mixture under reduced pressure, and water (50 mL) was added and acidified with 2M HCl to pH₅. The crude products were filtered and recrystallized (ethanol-water). All products

Parent azines 1,13

Comp. 1,
$$R = H$$
, $X = 3,3$ SO₂Cl Comp. 13, $R = 4$ -OMe, $X = 3,3$ SO₂Cl

Parent azines 24

Comp. **24**, Y = S,
$$X = 5.5$$
 SO₂Cl Comp. **35**, Y = O, $X = 5.5$ SO₂Cl (Unsuccessful)

CHART 1 (Continued)

Comp.

2

3

4

5

6

7

8

9

10

11

Η

Η

Н

Η

Η

 CH_3 SO2-NH-CH-CON2H3

SO₂-Glycyl-Glycine

SO₂-Glycyl-L-Alanine SO₂-Glycyl-L-Valine

SO₂-Glycyl-L-Leucine

CH2-CH-(CH3)2

12 CHART 1 (Continued)

2–4, **14–16**, and **25–27** were chromatographically homogeneous by iodine and benzidine development (cf. Charts 1, 2, and 3 and Table I).

IR of 2:
$$\nu 3350 \text{ cm}^{-1} \text{ (NH)}, \ \nu 1660 \text{ cm}^{-1} \text{ (C=O)}, \ \nu \ 1580 \text{ cm}^{-1} \text{ (C=N)}, \ \nu \ 1600 \text{ cm}^{-1} \text{ (Ar-C=C)}, \ \nu 1380, \ 1170 \text{ cm}^{-1} \text{ (SO}_2)$$

 $\nu \ 3270 \ {\rm cm^{-1}} \ ({\rm NH}), \ \nu \ 1640 \ {\rm cm^{-1}} \ ({\rm Co}), \ \nu \ 1590 \ {\rm cm^{-1}}$ **IR** of **14**: (SO_2) , ν 1270, 1030 cm⁻¹ (Ar–O–CH₃)

Parent azines 3 and 13

R = P-OMe

X = 3,3 SO_2C1

Comp. 14	R 4–OMe	X SO ₂ -NH-CH-COOH CH ₃
15	4–ОМе	SO ₂ NHCHCOOH CH(CH ₃) ₂
16	4–ОМе	SO ₂ –NH–CH–COOH CH ₂ –CH–(CH ₃) ₂
17	4–ОМе	SO ₂ –NH–CH–COOCH ₃ CH ₃
18	4–OMe	SO ₂ -NH-CH-COOCH ₃ CH ₂ -CH-(CH ₃) ₂
19	4–OMe	SO ₂ -NH-CH-CON ₂ H ₃
20	4–ОМе	SO ₂ -NH-CH-CON ₂ H ₃ CH-(CH ₃) ₂
21	4–OMe	SO ₂ –Glycyl–Glycine
22	4–OMe	SO ₂ –Glycyl–L–Alanine
23	4–ОМе	SO ₂ –Glycyl–L–Valine

CHART 2

IR of 25: ν 1610 cm⁻¹ (Ar.C=C), ν 1360, 1160 cm⁻¹ (SO₂) ¹H NMR of 2: (DMSO-d₆): δ 1.2 (s, 6H, 2<u>CH</u>₃-alalyl), δ 4.2 (s, 2H, 2<u>CH</u>), δ 8.8 (s, 2H, 2<u>CH</u>=N), δ 7.8 (s, 2H, 2N<u>H</u>), δ 8.4-7.6 (s, 8H, Ar—H), δ 9.8, (s, 2H, 2COOH), MS of 4 : m/z 594 (M⁺)

CHART 3

¹**H NMR** of **15**: (DMSO-d₆): δ 0.98 [s, 12H, (CH₃)₂], δ 1.97 (s, 2H, 2β CH Valyl), δ 4.26 (s, 2H, α CH Valyl), δ 4.33 (s, 6H, 2O-CH₃), δ 7.88 (s, 2H, 2NH), δ 8.4–7.6 (s, 8H, ArH), δ 8.8 (s, 2H, CH–N), δ 11.3 (s, 2H, COOH) MS of 15 : m/z 626 (M⁺)

TABLE I Physical Data for Diarylazines Derivatives 2-12, 14-23, and 25-34

Compaind					Molecular	I	lemental analysis Calculated/found	Elemental analysis % Calculated/found	
no.	X	$\mathbf{M.P.}^{\circ}\mathbf{C}$	Yield $\%$	$ m R_f$	formula	% C	% H	N %	S %
23	DL-Ala	268–270	71	0.81	$\mathrm{C}_{20}\mathrm{H}_{22}\mathrm{N}_4\mathrm{O}_8\mathrm{S}_2$	47.06	4.31	10.98	12.55
						47.00	4.22	10.91	12.41
က	L—Val	310 - 312	74	08.0	$\mathrm{C}_{24}\mathrm{H}_{30}\mathrm{N}_4\mathrm{O}_8\mathrm{S}_2$	50.88	5.30	68.6	11.31
						50.73	5.21	9.81	11.22
4	L-Leu	263 - 265	89	92.0	$\mathrm{C}_{26}\mathrm{H}_{34}\mathrm{N}_{4}\mathrm{O}_{8}\mathrm{S}_{2}$	52.53	5.72	9.43	10.77
						52.50	5.63	9.40	10.60
ro	DL-Ala-OMe	208 - 210	64	0.76	$\mathrm{C}_{22}\mathrm{H}_{26}\mathrm{N}_4\mathrm{O}_8\mathrm{S}_2$	49.07	4.83	10.41	11.90
						49.00	4.81	10.33	11.83
9	L-Leu-OMe	110-112	42	0.79	$\mathrm{C}_{28}\mathrm{H}_{38}\mathrm{N}_4\mathrm{O}_8\mathrm{S}_2$	54.02	6.11	9.00	10.29
						54.00	00.9	8.91	10.21
7	DL - Ala - N_2H_3	194 - 196	09	0.61	$\mathrm{C}_{20}\mathrm{H}_{26}\mathrm{N}_8\mathrm{O}_6\mathrm{S}_2$	44.61	4.83	20.82	11.90
						44.53	4.75	20.78	11.88
&	$ m L-Leu-N_2H_3$	165-167	54	69.0	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{N}_8\mathrm{O}_6\mathrm{S}_2$	50.16	6.11	18.00	10.29
						50.01	6.01	17.90	10.18
6	Gly—Gly—OMe	183 - 185	80	0.84	$\mathrm{C_{24}H_{28}N_6O_{10}S_2}$	46.15	4.49	13.46	10.26
						46.11	4.40	13.38	10.10
10	Gly—DL—Ala—OMe	187 - 189	92	98.0	${ m C_{26}H_{32}N_6O_{10}S_2}$	47.85	4.91	12.88	9.85
						47.77	4.88	12.80	9.70
11	Gly—L—Val—OMe	173 - 175	74	0.88	$\mathrm{C_{30}H_{40}N_6O_{10}S_2}$	50.85	5.65	11.86	9.04
						50.80	2.60	11.83	9.00
12	Gly—L—Leu—OMe	205-207	71	06.0	$ m C_{32}H_{44}N_6O_{10}S_2$	52.17	5.98	11.41	8.70
						52.00	5.81	11.40	8.70
14	DL-Ala	218 - 220	70	0.70	$\mathrm{C}_{22}\mathrm{H}_{26}\mathrm{N}_{4}\mathrm{O}_{10}\mathrm{S}_{2}$	46.32	4.56	9.82	11.23
						46.20	4.44	9.75	11.10
							(Con	(Continued on next page)	ext page)

TABLE I Physical Data for Diarylazines Derivatives 2-12, 14-23, and 25-34 (Continued)

Compound					Molecular		Elemental analysis % Calculated /Found	analysis % d /Found	
no.	X	$\mathbf{M.P.}^{\circ}\mathbf{C}$	Yield $\%$	$ m R_{f}$	formula	2 %	H %	N %	S %
15	L—Val	237–239	75	0.83	${ m C}_{26}{ m H}_{34}{ m N}_4{ m O}_{10}{ m S}_2$	49.84	5.43	8.95	10.22
						49.70	5.33	8.95	10.01
16	L-Leu	208 - 210	73	0.77	${ m C}_{28}{ m H}_{38}{ m N}_4{ m O}_{10}{ m S}_2$	51.38	5.81	8.56	9.79
						51.30	5.78	8.49	9.79
17	DL—Ala—OMe	178–180	83	0.64	$\mathrm{C}_{24}\mathrm{H}_{30}\mathrm{N}_4\mathrm{O}_{10}\mathrm{S}_2$	48.16	5.02	9.36	10.70
						48.00	5.00	9.21	10.61
18	L-Val-OMe	170-172	98	0.83	${ m C_{28}H_{38}N_4O_{10}S_2}$	51.38	5.81	8.56	67.6
						51.30	5.78	8.41	9.61
19	DL — Ala — N_2H_3	128 - 130	54	0.63	${ m C}_{22}{ m H}_{30}{ m N}_8{ m O}_8{ m S}_2$	44.20	5.02	18.73	10.70
						44.10	5.00	18.71	10.60
20	L -Val- N_2H_3	77-79	71	0.69	$\mathrm{C}_{26}\mathrm{H}_{38}\mathrm{N}_{8}\mathrm{O}_{8}\mathrm{S}_{2}$	47.71	5.81	17.13	9.79
						47.62	5.73	17.00	9.65
21	Gly—Gly—OMe	95-97	89	0.75	${ m C}_{26}{ m H}_{32}{ m N}_6{ m O}_{12}{ m S}_2$	45.61	4.68	12.28	9.36
						45.52	4.61	12.01	9.30
22	Gly—L—Ala—OMe	80 - 82	58	0.63	${ m C_{28}H_{36}N_6O_{12}S_2}$	47.19	5.06	11.80	8.99
						47.00	5.00	11.63	8.79
23	Gly—L—Val—OMe	110 - 112	54	0.66	$\mathrm{C_{32}H_{44}N_6O_{12}S_4}$	50.00	5.73	10.94	8.33
						49.85	5.60	10.90	8.31
25	DL—Ala	183 - 185	65	98.0	$ m C_{16}H_{18}N_4O_8S_4$	36.78	3.45	10.73	24.52
						36.66	3.41	10.61	24.44
26	L—Val	205 - 207	29	0.84	${ m C}_{20}{ m H}_{26}{ m N}_4{ m O}_8{ m S}_4$	41.52	4.50	69.6	22.15
						41.50	4.44	9.61	22.00
27	L-Leu	212 - 214	77	0.82	${ m C}_{22}{ m H}_{30}{ m N}_4{ m O}_8{ m S}_4$	43.56	4.95	9.24	21.12
						43.51	4.81	9.10	21.00
28	DL—Ala—OMe	138 - 140	48	0.73	$ m C_{18}H_{22}N_4O_8S_4$	39.27	4.00	10.18	23.27
						39.11	3.92	10.10	23.11

59	L-Val-OMe	178–180	42	0.75	$\mathrm{C}_{22}\mathrm{H}_{30}\mathrm{N}_{4}\mathrm{O}_{8}\mathrm{S}_{4}$	43.56	4.95	9.24	21.12
	;	0	·	1	3	43.44	$\frac{4.81}{6.0}$	9.10	21.01
30	$DL-Ala-N_2H_3$	122 - 124	09	0.77	$\mathrm{C_{16}H_{22}N_8O_6S_4}$	34.91	4.00	20.36	23.27
						34.90	3.94	20.11	23.11
31	$L-Val-N_2H_3$	154 - 156	64	0.79	${ m C}_{20}{ m H}_{30}{ m N}_8{ m O}_6{ m S}_4$	39.60	4.95	18.48	21.12
						39.56	4.81	18.33	21.00
32	Gly—Gly—OMe	133 - 135	61	0.80	${ m C}_{20}{ m H}_{24}{ m N}_6{ m O}_{10}{ m S}_4$	37.74	3.77	13.21	20.13
						37.63	3.71	13.10	20.00
33	Gly—L—Ala—OMe	120 - 122	20	0.84	$\mathrm{C}_{22}\mathrm{H}_{28}\mathrm{N}_{6}\mathrm{O}_{10}\mathrm{S}_{4}$	39.76	4.22	12.65	19.28
						39.66	4.20	12.55	19.10
34	Gly—L—Val—OMe	143 - 145	73	0.87	$\mathrm{C}_{26}\mathrm{H}_{36}\mathrm{N}_{6}\mathrm{O}_{10}\mathrm{S}_{4}$	43.33	5.00	11.67	17.79
						43.10	4.91	11.61	17.66

¹H NMR of 26: (DMSO-d₆): δ 4.1 [s, 2H, 2C<u>H</u>], δ 4.5 (s, 4H, 2<u>CH</u>₂), δ 4.0 (s, 6H, 2O–CH₃), δ 7.8–7.7 (s, 4H, 2 thiphene), δ 8.3–7.17 (s, 6H, 2Ar–H), δ 8.68 (s, 2H, 2CH=N), δ 11.3 (s, 2H, 2COOH), MS of 27 : m/z 606 (M⁺)

Synthesis of Disulfonylamino Acid Methyl Esters 5, 6, 17, 18, 28, and 29: General Procedure

A suspension of coupling reaction products **2–4**, **17**, **18**, and **28** and **29** (0.2 mole) in absolute methanol (100 mL) was cooled to -10°C , and pure thionyl chloride (2.2 mL) was added dropwise during 1 h. The reaction mixture was stirred for an additional 3–4 h at r.t. It was kept overnight, and the solvent was removed by vacuum distillation. The residual solid material was recrystallized (methanol-water) (cf. Table I, and Charts 1, 2, and 3).

IR of **17**: $\nu 3460 \text{cm}^{-1} \text{ (NH)}, \nu 3250, 1370, 1170 \text{ cm}^{-1}$

 (SO_2-NH) , ν 1445, 1360 cm⁻¹ (COOCH₃),

 $\nu 2960 \text{ cm}^{-1} (\text{O-CH}_3), \nu 1760 \text{ cm}^{-1} (\underline{\text{Co}}), \nu 1310,$

 $1160 \text{ cm}^{-1} (SO_2)$

¹**H NMR** of **18**: (DMSO-d₆): δ 8.34–7.17 (s, 8H, Ar-H), δ 3.81–3.87

(s, 6H, 2COOCH₃), and disappear of OH protons, and other peaks in support of their structures.

Synthesis of Disulfonylamino Acid Hydrazides 7, 8, 19, 20 and 30, 31: General Procedure

The methyl esters **5**, **6**, **17**, **18** and **28**, **29**, (0.2 mol) were dissolved in ethanol (100 ml) and hydrazine hydrate 85% (0.2 mol) was added. The reaction mixture was stirred for 3 h at 20°C and left 24 h at room temperature. The crystalline products **7**, **8**, **19**, **20** and **30**, **31** were filtered off, washed with water and recrystallized (ethanol–water).

The hydrazides **7**, **8**, **19**, **20**, **30** and **31** were shown to be chromoatographically to be homogeneous. cf. Table 1, Chart 1, 2 and 3.

IR of **7**: ν 3340, 3125 cm⁻¹ (NH), ν 1640, cm⁻¹ (Co), ν 1600,

1550 cm $^{-1}$ (Ar–C=C), ν 1340, 1180 cm $^{-1}$ (SO $_2)$

¹**H NMR** of **20**: (DMSO-d₆): δ 9(s, \underline{H} , SO₂N \underline{H}), δ 8.2–7.5 (Ar-H), δ

 $5.52 (s, 2NH), \delta 5.61 (s, 4H, 2NH₂)$

Synthesis of Disulfonyl Dipeptide Methyl Esters 9–12, 21–23, and 32–34: General Procedure

To a solution of amino acid methyl ester hydrochloride (0.01 mol) in THF (100 mL) was added triethylamine (5 mL). The solution was stirred at

 $20^{\circ}\mathrm{C}$ for 30 min and cooled to $0^{\circ}\mathrm{C}$, where the disulfonyl amino acid (0.005 mol) and dicyclohexylcarbodiimide \mathbf{DCC} (1.62 g) were added to the above mixture. The reaction mixture was stirred for 2 h at $0^{\circ}\mathrm{C}$ and for another 2 h at r.t. The precipitated dicyclohexylurea was filtered off, and acetic acid (2 mL) was added to the solution and was left standing overnight. The precipitate was filtered off, and the remaining solution was distilled under vacuum. The remaining solid was recrystallized from ethanol-water. The products were to be chromatographically homogeneous.

IR of **10**: ν 3300, 3100 cm⁻¹ (NH, CONH), ν 1750 cm⁻¹ (Co),

ν 1320 cm⁻¹ (COOCH₃)

IR of **12**: $\nu 3390 \text{ cm}^{-1} \text{ (NH)}, \nu 1370, 1170 \text{ cm}^{-1} \text{ (SO}_2\text{-NH)}, \nu$

1665, 1530, 1280 cm $^{-1}$ (CONH), ν 1445, 1350 cm $^{-1}$ (COOCH₃), ν 1760 cm $^{-1}$ (C=O), ν 1610, cm $^{-1}$

(Arc=C), 1380, 1180 cm^{-1} (SO₂)

¹**H NMR** of **10**: (DMSO-d₆): δ 7.86 (s, 2H, 2SO₂NH), δ 8.04 (s, 2H,

2CONH), δ 3.87 (s, 6H, 2COOCH₃), 2H, ν 4.34 (s, 2H, 2α -CH-alalyl), ν 1.22 (s, 6H, CH₃-alalyl) and other bands supporting the structure of dipeptide

¹**H NMR** of **23**: (DMSO-d₆): δ 8.01 (s, 2H, 2CON<u>H</u>), δ 3.85 (s, 6H,

2COOCH₃), ν 4.26 (s, 2H, 2α-C<u>H</u> Valyl), δ 1.79 (s, 2H, 2 β CH-Valyl), ν 0.98 [s, 12H, 2(CH₃)₂] and

other bands supporting the structure of dipeptide

REFERENCES

- [1] R. A. El-Sayed, J. Serb. Chem. Soc., 56, 311 (1991).
- [2] R. A. El-Sayed, N. S. Khalaf, F. A. Kora, and Y. A. Abbas, Pak. J. Sci. Industrial Research, 34, 369 (1991).
- [3] R. A. El-Sayed, N. S. Khalaf, F. A. Kora, and M. F. Badie, J. Chem. Soc. Pak. 14, 49 (1992).
- [4] R. A. El-Sayed, N. S. Khalaf, F. A. Kora, and M. H. El-Hakim, Proc. Ind. Nat. Sci. Acad, 58, 389 (1992).
- [5] R. A. El-Sayed, J. Ind. Chem. Soc., 69, 618 (1992).
- [6] R. A. El-Sayed, N. S. Khalaf, F. A. Kora, and M. A. El-Gazzar, J. Serb. Chem. Soc., 59, 727 (1994).
- [7] R. A. El-Sayed, Ind. Chem. Soc., 75, 53 (1998).
- [8] R. A. El-Sayed, *Phosphorus, Sulfur, and Silicon*, **131**, 207 (1997).
- [9] R. A. El-Sayed, Chemistry of Heterocyclic Compounds, 7, 821 (1998).
- [10] R. A. El-Sayed, Chemistry of Heterocyclic Compounds, 1, 95 (2001).
- [11] R. A. El-Sayed, Phosphorus, Sulfur, and Silicon, 179, 237 (2004).
- [12] R. A. El-Sayed, Phosphorus, Sulfur, and Silicon, 180, (2006).
- [13] K. Mijatake, J. Pharm. Soc. Japan, 72, 1162 (1952); Chem. Abstr., 47, 2733a (1953).

- [14] O. Meth-Cohn, Thiophene in Comprehensive Organic Chemistry, p. 796, (Pergamon Press, Oxford, 1979).
- [15] R. O. C. Norman, Principles of Organic Synthesis, p. 387, (Methuen, London, 1968).
- [16] R. J. Cremlyn, F. J. Swinbourne, and K. Yung, J. Heterocyclic Chem., 18, 997 (1981).
- [17] R. J. Cremyln, F. J. Swinbourne, and O. O. Shode, J. Chem. Soc. Pak., 8, 323 (1986).
- [18] R. J. Cremlyn, F. J. Swinbourne, and S. Grahan, Phosphorus, Sulfur, and Silicon, 60, 57 (1994).